Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
NPJ Vaccines ; 7(1): 110, 2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2042325

ABSTRACT

The objective of this study is to further analyze recombinant rabies virus-vectored SARS-CoV-2 vaccine, CORAVAX, as an effective COVID-19 vaccine strategy. CORAVAX has proven immunogenic and protective against SARS-CoV-2 in animal models. Here, we have screened adjuvants for the highest quality antibody titers, negated the concern of pre-existing rabies-vector immunity, and established its potential as a long-term COVID-19 vaccine. We have tested toll-like receptor 4 (TLR4) agonists, inflammasome activators, and alum adjuvants in CORAVAX and found TLR4-activating MPLA-AddaVax to have the greatest potential. We followed the humoral immune response to CORAVAX in mice with pre-existing rabies virus immunity and saw no significant differences compared to naive mice. We then followed the immune response to CORAVAX over several months and 1-year post-immunization. Mice maintained high antigen-specific serum antibody titers as well as long-lived antibody-secreting cells in the spleen and bone marrow. We believe this rabies-vector strategy combats the problem of waning immunity of other COVID-19 vaccines. These results together support CORAVAX's potential during the ongoing COVID-19 pandemic.

2.
Viruses ; 14(6)2022 05 24.
Article in English | MEDLINE | ID: covidwho-1911604

ABSTRACT

Without sufficient herd immunity through either vaccination or natural infection, the coronavirus disease 2019 pandemic is unlikely to be controlled. Waning immunity with the currently approved vaccines suggests the need to evaluate vaccines causing the induction of long-term responses. Here, we report the immunogenicity and efficacy of our adjuvanted single-dose Rabies-vectored SARS-CoV-2 S1 vaccine, CORAVAX, in hamsters. CORAVAX induces high SARS-CoV-2 S1-specific and virus-neutralizing antibodies (VNAs) that prevent weight loss, viral loads, disease, lung inflammation, and the cytokine storm in hamsters. We also observed high Rabies VNA titers. In summary, CORAVAX is a promising dual-antigen vaccine candidate for clinical evaluation against SARS-CoV-2 and Rabies virus.


Subject(s)
COVID-19 , Rabies Vaccines , Rabies virus , Rabies , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Cricetinae , Humans , Rabies/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
3.
J Allergy Clin Immunol ; 150(1): 17-21, 2022 07.
Article in English | MEDLINE | ID: covidwho-1864572

ABSTRACT

In the years since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic began and spread across the globe, lessons have been learned about the challenges and opportunities that a pandemic brings to humankind. Researchers have produced many vaccines at unprecedented speed to protect people, but they have also been cognizant of the challenges presented by a new and unexpected infectious disease. The scope of this review is to examine the path of vaccine discovery so far and identify potential targets. Here, we provide insight into the leading vaccines and their advantages and challenges. We discuss the emerging mutations within the SARS-CoV-2 spike protein and other issues that need to be addressed to overcome coronavirus disease 2019 (COVID-19) completely. Future research is needed to develop a cheap, temperature-stable vaccine providing long-term immunity that protects the upper respiratory tract.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , COVID-19/prevention & control , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
4.
Viruses ; 14(6):1126, 2022.
Article in English | MDPI | ID: covidwho-1857390

ABSTRACT

Without sufficient herd immunity through either vaccination or natural infection, the coronavirus disease 2019 pandemic is unlikely to be controlled. Waning immunity with the currently approved vaccines suggests the need to evaluate vaccines causing the induction of long-term responses. Here, we report the immunogenicity and efficacy of our adjuvanted single-dose Rabies-vectored SARS-CoV-2 S1 vaccine, CORAVAX, in hamsters. CORAVAX induces high SARS-CoV-2 S1-specific and virus-neutralizing antibodies (VNAs) that prevent weight loss, viral loads, disease, lung inflammation, and the cytokine storm in hamsters. We also observed high Rabies VNA titers. In summary, CORAVAX is a promising dual-antigen vaccine candidate for clinical evaluation against SARS-CoV-2 and Rabies virus.

5.
PLoS Pathog ; 18(1): e1010255, 2022 01.
Article in English | MEDLINE | ID: covidwho-1649753

ABSTRACT

Nucleoside modified mRNA combined with Acuitas Therapeutics' lipid nanoparticles (LNPs) has been shown to support robust humoral immune responses in many preclinical animal vaccine studies and later in humans with the SARS-CoV-2 vaccination. We recently showed that this platform is highly inflammatory due to the LNPs' ionizable lipid component. The inflammatory property is key to support the development of potent humoral immune responses. However, the mechanism by which this platform drives T follicular helper (Tfh) cells and humoral immune responses remains unknown. Here we show that lack of Langerhans cells or cDC1s neither significantly affected the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cells and humoral immune responses, nor susceptibility towards the lethal challenge of influenza and SARS-CoV-2. However, the combined deletion of these two DC subsets led to a significant decrease in the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cell and humoral immune responses. Despite these observed defects, these mice remained protected from lethal influenza and SARS-CoV-2 challenges. We further found that IL-6, unlike neutrophils, was required to generate normal Tfh cells and antibody responses, but not for protection from influenza challenge. In summary, here we bring evidence that the mRNA-LNP platform can support the induction of protective immune responses in the absence of certain innate immune cells and cytokines.


Subject(s)
COVID-19 Vaccines/immunology , Dendritic Cells/immunology , Influenza Vaccines/immunology , Langerhans Cells/immunology , Liposomes/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Animals , COVID-19/immunology , Mice , Nanoparticles , Orthomyxoviridae Infections/immunology , SARS-CoV-2/immunology
6.
NPJ Vaccines ; 6(1): 91, 2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1322478

ABSTRACT

The development of effective countermeasures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent responsible for the COVID-19 pandemic, is a priority. We designed and produced ConVac, a replication-competent vesicular stomatitis virus (VSV) vaccine vector that expresses the S1 subunit of SARS-CoV-2 spike protein. We used golden Syrian hamsters as animal models of severe COVID-19 to test the efficacy of the ConVac vaccine. A single vaccine dose elicited high levels of SARS-CoV-2 specific binding and neutralizing antibodies; following intranasal challenge with SARS-CoV-2, animals were protected from weight loss and viral replication in the lungs. No enhanced pathology was observed in vaccinated animals upon challenge, but some inflammation was still detected. The data indicate rapid control of SARS-CoV-2 replication by the S1-based VSV-vectored SARS-CoV-2 ConVac vaccine.

7.
Curr Opin Virol ; 49: 52-57, 2021 08.
Article in English | MEDLINE | ID: covidwho-1213121

ABSTRACT

SARS-CoV-2 has been detected in more than 141 million people and caused more than 3 million deaths worldwide. To reduce the additional loss of millions of lives until natural immunity is reached, researchers have focused on the only known method to stop the COVID-19 pandemic: vaccines. The pandemic has propelled high-speed vaccine development, some based on novel technology previously not utilized in the vaccine field. The new technology opens new possibilities and comes with challenges because the long-term performance of the new platforms is unknown. Here we review the current leading vaccine candidates against COVID-19 and outline the advantages and disadvantages as well as the unknowns of each candidate.


Subject(s)
Biomedical Research , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Adenoviridae/genetics , Biomedical Research/statistics & numerical data , Biomedical Research/trends , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/genetics , Humans , Mutation , SARS-CoV-2/genetics , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/genetics , Vaccines, Inactivated/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/adverse effects , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
8.
PLoS Pathog ; 17(3): e1009383, 2021 03.
Article in English | MEDLINE | ID: covidwho-1150561

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent coronavirus that has caused a worldwide pandemic. Although human disease is often asymptomatic, some develop severe illnesses such as pneumonia, respiratory failure, and death. There is an urgent need for a vaccine to prevent its rapid spread as asymptomatic infections accounting for up to 40% of transmission events. Here we further evaluated an inactivated rabies vectored SARS-CoV-2 S1 vaccine CORAVAX in a Syrian hamster model. CORAVAX adjuvanted with MPLA-AddaVax, a TRL4 agonist, induced high levels of neutralizing antibodies and generated a strong Th1-biased immune response. Vaccinated hamsters were protected from weight loss and viral replication in the lungs and nasal turbinates three days after challenge with SARS-CoV-2. CORAVAX also prevented lung disease, as indicated by the significant reduction in lung pathology. This study highlights CORAVAX as a safe, immunogenic, and efficacious vaccine that warrants further assessment in human trials.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19 , Rabies virus/immunology , SARS-CoV-2/immunology , Animals , COVID-19/immunology , COVID-19/prevention & control , Disease Models, Animal , Humans , Mesocricetus
9.
NPJ Vaccines ; 5: 98, 2020.
Article in English | MEDLINE | ID: covidwho-882900

ABSTRACT

The recently emerged coronavirus SARS-CoV-2, the causative agent of COVID-19, is rapidly spreading in the world. The exponentially expanding threat of SARS-CoV-2 to global health highlights the urgent need for a vaccine. Herein we show the rapid development of a novel, highly efficient, and safe COVID-19 vaccine using a rabies virus-based vector that has proven to be an efficient vaccine against several emerging infectious diseases. This study reports that both a live and an inactivated rabies virus containing the SARS-CoV-2 spike S1 protein induces potent virus-neutralizing antibodies at much higher levels than seen in the sera of convalescent patients. In summary, the results provided here warrant further development of this safe and established vaccine platform against COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL